If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+8y-20=0
a = 4; b = 8; c = -20;
Δ = b2-4ac
Δ = 82-4·4·(-20)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{6}}{2*4}=\frac{-8-8\sqrt{6}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{6}}{2*4}=\frac{-8+8\sqrt{6}}{8} $
| 2(5x+25)=50+10x | | 3(3r-1)+15=33 | | (3x+10)+x=90 | | 11(n)=149 | | 3(3x+5)+2(2x+3)+2=13x+23 | | 12x-12=12x+12 | | -3-1(-6-6k)=3(k+6) | | -x/8=-45 | | (-2/3*m)-4=10 | | 2/5(x-7)=3 | | 8x2-128=0 | | -(3-4a)=-3a+39 | | -1m+10+6m-3m=-20 | | 31/10s=6/15 | | (4x+10)+4x=90 | | -24-8b=4(4+3b) | | 5x+3/8=3x | | 0=(1/4)(-4+3y)^2+2y-1 | | 3(7x+6)=4(5x+8) | | x/8=13+x | | x2-9x+18=0 | | -6(-2-3x)=66 | | -2(6y+2)+9y=35 | | 10(1+3b=-20 | | (x-1/2)^2=49/4 | | 2x/3-2=x+6 | | B+6=10+7b-4b | | 4a=7a-96 | | r^2=5+4r | | 2x-9+x-8=8 | | 1/3(18y-6)=-5/6(12-4y) | | 3/5=5/7+y |